最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Geometry] Archimedes' Triumph

2021-11-27 09:19 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng(鄭濤)

【Problem】

In Volume I of On the ''Sphere and the Cylinder'', Archimedes (c. 287 - 212 BC) determined the volumetric ratio of a sphere to a circumscribed cylinder. The height and width of the cylinder is equal to the diameter of the sphere. What is this ratio?

Archimedes' Sphere in the Cylinder

【Solution】

Let the radius of the sphere be r. The circumscribed cylinder shares the same height and width as the sphere, so?the height of the cylinder is h%20%3D%202r.

The volume of a sphere is %20V_%7Bsphere%7D%20%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%20, and the volume of a cylinder is V_%7Bcylinder%7D%20%3D%20%5Cpi%20r%5E2%20h. Thus, the volume circumscribed cylinder is

%20V_%7Bcylinder%7D%20%3D%20%5Cpi%20r%5E2%20%5Ctimes%202r

V_%7Bcylinder%7D%20%3D%202%5Cpi%20r%5E3

Therefore, the volumetric ratio of a sphere to its circumscribed cylinder is

V_%7Bsphere%7D%3AV_%7Bcylinder%7D%20%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%3A2%5Cpi%20r%5E3

which simplifies to

V_%7Bsphere%7D%3AV_%7Bcylinder%7D%20%3D%202%3A3

Archimedes


[Geometry] Archimedes' Triumph的評論 (共 條)

分享到微博請遵守國家法律
余江县| 永寿县| 神农架林区| 莲花县| 佛坪县| 新郑市| 东莞市| 池州市| 永宁县| 土默特左旗| 汝阳县| 时尚| 金沙县| 辽阳县| 武定县| 太仓市| 紫云| 宕昌县| 沙田区| 杂多县| 麦盖提县| 攀枝花市| 日土县| 济阳县| 社旗县| 浦北县| 彭州市| 宜城市| 顺昌县| 梅河口市| 崇左市| 滦平县| 尼勒克县| 霍林郭勒市| 定远县| 安义县| 普兰店市| 永新县| 滨海县| 红桥区| 天柱县|