最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

LeetCode 1314. Matrix Block Sum

2023-05-26 14:13 作者:您是打尖兒還是住店呢  | 我要投稿

Given a?m x n?matrix?mat?and an integer?k, return?a matrix?answer?where each?answer[i][j]?is the sum of all elements?mat[r][c]?for:

  • i - k <= r <= i + k,

  • j - k <= c <= j + k, and

  • (r, c)?is a valid position in the matrix.

?

Example 1:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1

Output: [[12,21,16],[27,45,33],[24,39,28]]

Example 2:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2

Output: [[45,45,45],[45,45,45],[45,45,45]]

?

Constraints:

  • m ==?mat.length

  • n ==?mat[i].length

  • 1 <= m, n, k <= 100

  • 1 <= mat[i][j] <= 100

依次遍歷即可,只是沒(méi)想到居然沒(méi)有超時(shí);

下面是代碼:

Runtime:?83 ms, faster than?22.89%?of?Java?online submissions for?Matrix Block Sum.

Memory Usage:?44.8 MB, less than?5.07%?of?Java?online submissions for?Matrix Block Sum.


LeetCode 1314. Matrix Block Sum的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
铜陵市| 高唐县| 卓尼县| 额尔古纳市| 南投县| 迭部县| 长泰县| 泰州市| 乌兰浩特市| 内黄县| 红原县| 阜南县| 武宣县| 井研县| 瑞昌市| 遵化市| 墨竹工卡县| 江北区| 宣威市| 全南县| 公主岭市| 竹北市| 怀化市| 新宁县| 恩施市| 瑞金市| 青龙| 安远县| 辉县市| 安溪县| 察隅县| 常州市| 陆良县| 夹江县| 泸州市| 桂阳县| 乌拉特前旗| 蓝山县| 诏安县| 普陀区| 孟津县|