最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

Reinforcement Learning_Code_Simplest Actor-Critic

2023-04-12 21:59 作者:別叫我小紅  | 我要投稿

Following results and code are the implementation of simplest actor-critic in Gymnasium's Cart Pole environment. More actor-critic alorithms will be added in the learning of OpenAi Sunning Up tutorial.


RESULTS:

The simplest actor-critic algorithm takes too many steps to converge, it may be caused by large variance in sampling. If a baseline is reduced when updating policy, which refers to the trick used in?A2C, this phenomenon may be alleviated.

Visualizations of (i) changes in score?and?value approximation loss, and (ii) animation results.

Fig. 1. Changes in score and value approximation loss.
Fig. 2. Animation result?which got?a score of 357 points.


CODE:

NetWork.py


QACAgent.py


train_and_test.py


The above code are mainly based on?Lesson 7 of the David Silver's lecture [1],?Chapter 10 of Shiyu Zhao's Mathematical Foundation of Reinforcement Learning [2], and?Chapter 10 of Hands-on Reinforcement Learning?[3].


Reference

[1] https://www.davidsilver.uk/teaching/

[2] https://github.com/MathFoundationRL/Book-Mathmatical-Foundation-of-Reinforcement-Learning

[3]?https://hrl.boyuai.com/


Reinforcement Learning_Code_Simplest Actor-Critic的評論 (共 條)

分享到微博請遵守國家法律
高青县| 营山县| 清涧县| 浏阳市| 邢台县| 青神县| 油尖旺区| 阜新市| 平顺县| 兖州市| 尚志市| 武山县| 应用必备| 凤冈县| 南岸区| 水城县| 新龙县| 乐业县| 靖远县| 肥城市| 探索| 通渭县| 南康市| 东台市| 绥中县| 南皮县| 荃湾区| 邹城市| 凤翔县| 通山县| 固镇县| 白山市| 屯门区| 嫩江县| 孝义市| 吴忠市| 清丰县| 海兴县| 五河县| 沈丘县| 宝坻区|