最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

An Introduction to Modular Arithmetic

2023-09-27 11:59 作者:第一性原理  | 我要投稿

The best way to introduce modular arithmetic is to think of the face of a clock.


The numbers go from 1 to 12, but when you get to "13 o'clock",?it actually becomes 1 o'clock again

So?

13?becomes?1,?

14?becomes?2,?

and so on.

This can keep going, so when you get to "25?o'clock'', you are actually back round to where?1?o'clock is on the clock face (and also where?13?o'clock was too).

What we are saying is?

"13=1+?some multiple of?12", and?

"38=2+?some multiple of?12",?

or, alternatively, "the remainder when you divide?13?by?12?is?1" and "the remainder when you divide?38?by 12 is 2''. The way we write this mathematically is?

13≡1?mod?12,?

38≡2?mod?12

and so on. This is read as?

"13?is congruent to?1?mod (or modulo)?12" and?

"38?is congruent to?2?mod?12".

Congruence

key words:

mod?u?lar?/?m?dj?l??$??mɑ?d??l?r/?adjective?

con?gru?ent?/?k??ɡru?nt?$??kɑ??-/?adjective

congruence

re?main?der?/r??me?nd??$?-?r/?●○○?noun


An Introduction to Modular Arithmetic的評論 (共 條)

分享到微博請遵守國家法律
思南县| 门头沟区| 铜梁县| 永仁县| 上蔡县| 南城县| 丰都县| 德兴市| 临城县| 时尚| 克东县| 邵阳市| 临高县| 承德市| 海门市| 沧源| 宣武区| 耿马| 齐齐哈尔市| 措美县| 邵东县| 昔阳县| 镇原县| 宁晋县| 南江县| 比如县| 吉林省| 京山县| 泰和县| 绍兴市| 漳平市| 贵阳市| 英德市| 玛沁县| 大悟县| 西盟| 东城区| 连南| 罗城| 吴江市| 庆安县|