最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Series] Arithmetic Series of Higher Order

2021-10-03 09:18 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Chinese mathematicians of the Song-Yuan period (960 - 1368 AD) investigated finite sums related to the diagonals of Jia Xian's triangle (arithmetic triangle). The following list given names of several finite sums found in Zhu Shijie’s "Suanxue Qimeng" (1299) and "SiYuan Yujian" (1303).

"Suanxue Qimeng" 算學(xué)啟蒙 (Introduction to Mathematics)

"SiYuan Yujian" 四元玉監(jiān) (Jade Mirror of the Four Unknowns)

茭草垛
1%2B2%2B3%2B4%2B...%2Bn%20%3D%20%5Cfrac%7B1%7D%7B2!%7D%20n(n%2B1)

落一形垛
1%2B3%2B6%2B10%2B...%2B%5Cfrac%7B1%7D%7B2!%7Dn(n%2B1)%20%3D%20%5Cfrac%7B1%7D%7B3!%7Dn(n%2B1)(n%2B2)%20

撒星形垛
1%2B4%2B10%2B20%2B...%2B%5Cfrac%7B1%7D%7B3!%7Dn(n%2B1)(n%2B2)%20%3D%20%5Cfrac%7B1%7D%7B4!%7Dn(n%2B1)(n%2B2)(n%2B3)

撒星更落一形垛
1%2B5%2B15%2B35%2B...%2B%20%5Cfrac%7B1%7D%7B4!%7Dn(n%2B1)(n%2B2)(n%2B3)%3D%5Cfrac%7B1%7D%7B5!%7Dn(n%2B1)(n%2B2)(n%2B3)(n%2B4)

These finite sums are called arithmetic series of higher order, which follow the general pattern

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bp!%7Di(i%2B1)(i%2B2)...(i%2Bp-1)%20%3D%20%5Cfrac%7B1%7D%7B(p%2B1)!%7Dn(n%2B1)(n%2B2)...(n%2Bp)

Alternatively this can be expressed as

%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bn%2Bp%7D%7Bp%2B1%7D

Prove this identity.


【Solution】

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%7D%7Bp%7D%20%2B%20%5Cbinom%7Bp%2B1%7D%7Bp%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D

Observe that %20%5Cbinom%7Bp%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%2B1%7D%7Bp%2B1%7D, hence,

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bp%2B1%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B1%7D%7Bp%7D%20%5Cright%5D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

By the binomial identity %20%5Cbinom%7Bn-1%7D%7Bk%7D%20%2B%20%5Cbinom%7Bn-1%7D%7Bk-1%7D%20%3D%20%5Cbinom%7Bn%7D%7Bk%7D, we get

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%2B2%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

Following this step-pattern

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bp%2B2%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%5Cright%5D%20%2B%20%5Cbinom%7Bp%2B3%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

until we reach the final term

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bn%2Bp-1%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20%5Cright%5D%20

Therefore,

%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bn%2Bp%7D%7Bp%2B1%7D


[Series] Arithmetic Series of Higher Order的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
聊城市| 吉水县| 昂仁县| 沙雅县| 木里| 抚顺市| 凭祥市| 永宁县| 齐齐哈尔市| 集贤县| 项城市| 香格里拉县| 蛟河市| 青阳县| 桂林市| 龙游县| 新余市| 益阳市| 沾益县| 澄城县| 广河县| 巨野县| 汤阴县| 南澳县| 惠东县| 江陵县| 丰城市| 莱西市| 威海市| 鸡西市| 公主岭市| 黑水县| 宝丰县| 隆安县| 宁阳县| 崇义县| 定襄县| 平泉县| 遵义县| 德清县| 喀什市|