最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Calculus] Beltrami Identity

2021-11-28 14:58 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The Beltrami identity, named after the Italian mathematician Eugenio Beltrami (1835 - 1900), is a simplified and less general version of the Euler–Lagrange equation in the calculus of variations.

Show that the Euler-Lagrange equation

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%3D%200

can be written as

%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

Then show that if L does not explicitly depend on t, then

L%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%3D%20C

where C is constant.

Hint:Use the shorthand %5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%5Cdot%7By%7D and %5Cfrac%7Bd%5E2%20y%7D%7Bdt%5E2%7D%20%3D%20%5Cfrac%7Bd%5Cdot%7By%7D%7D%7Bdt%7D%20%3D%20%5Cddot%7By%7D%20.

【Solution】

Note that the total derivative

%20%5Cfrac%7BdL%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cfrac%7Bd%20%5Cdot%7By%7D%7D%7Bdt%7D

can be expressed as

%5Cfrac%7BdL%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%20

Also,

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5B%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20%3D%20%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D

Substituting the above two expressions into

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

gives

%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%20-%20%5Cleft%5B%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200%20


Simplify this expression and factor out -%20%5Cdot%7By%7D:

%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20-%20%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%3D%200%20

-%20%5Cdot%7By%7D%20%5Cleft%5B%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cright%5D%20%3D%200

Divide away -%20%5Cdot%7By%7D:

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%3D%200%20

Therefore,

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

is equivalent to the Euler-Lagrange equation.

If L%20 does not explicitly depend on t, then %5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200 and%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200%20

becomes

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20%3D%200

So by integration

L%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%3D%20C

where C%20 is constant.


[Calculus] Beltrami Identity的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
华容县| 光泽县| 阜平县| 甘肃省| 高唐县| 江孜县| 横山县| 衡东县| 武平县| 麟游县| 罗甸县| 忻城县| 雷山县| 临城县| 奈曼旗| 永靖县| 茌平县| 璧山县| 清丰县| 海兴县| 盐边县| 隆子县| 连南| 安化县| 蒲江县| 高雄县| 盘山县| 个旧市| 罗平县| 蒲城县| 临沂市| 涿鹿县| 策勒县| 滁州市| 盈江县| 梨树县| 清远市| 拉孜县| 中阳县| 微山县| 新兴县|