最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Integral of Inverse Tangent

2021-10-07 09:49 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

This problem is a good exercise on integration by parts and integration by substitution.
Compute the integral

%20%5Cint%20%5Carctan(x)%20dx

【Solution】

Step 1:Integration by Parts

Let u%20%3D%20%5Carctan(x) and %20dv%20%3D%20(1)dx.

Then du%20%3D%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%20dx%20 and v%20%3D%20x%20.

By the integration by parts

%5Cint%20udv%20%3D%20uv%20-%20%5Cint%20vdu

we get

%5Cint%20%5Carctan(x)%20dx%20%20%3D%20%5Carctan(x)%5Ccdot%20x%20-%20%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx


Step 2:Integration by Substitution

Now focus on the integral %5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20. Use the substitution method for this integral.

Let u%20%3D%201%20%2Bx%5E2, then du%20%3D%202x%20dx.

Therefore,

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cint%20%5Cfrac%7B1%7D%7Bu%7D%20du%20

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C


Consequently, the complete integral is

%20%5Cint%20%5Carctan(x)%20dx%20%3D%20x%5Carctan(x)%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C%20%2B%20C

[Calculus] Integral of Inverse Tangent的評論 (共 條)

分享到微博請遵守國家法律
阿克苏市| 乾安县| 丹寨县| 丰都县| 天水市| 铜鼓县| 济南市| 黄平县| 依兰县| 大余县| 镇江市| 专栏| 靖边县| 梓潼县| 内黄县| 浑源县| 庆城县| 花垣县| 靖宇县| 荃湾区| 北海市| 凌源市| 志丹县| 松滋市| 肃宁县| 施甸县| 巢湖市| 尉犁县| 铜鼓县| 邹平县| 吴旗县| 阜康市| 桂东县| 昌江| 屏南县| 永胜县| 定襄县| 会昌县| 连云港市| 涪陵区| 甘南县|