最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Combinatorics] Indian Combinatorics

2021-11-02 10:18 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Problem 1: Lord Shiva (Bhaskara's ''Lilavati'', c. 1150 AD)

The God Shiva had ten items (one item in each hand): the rope, the hook, the snake, the drum, the skull, the trident, the bedstead, the dagger, the arrow, and the bow. How many different ways can these items be exchanged?

Problem 2: Six Flavour (Mahavira's ''Ganita-Sara-Sangraha'', c. 850 AD)

There are six flavours: astringent, bitter, sour, spicy, salty, and sweet. In how many ways can different flavours be used in combination?

【Solution】

Problem 1: Lord Shiva (Bhaskara's ''Lilavati'', c. 1150 AD)

This is a permutation problem. The number of possible arrangements of Shiva’s items is 10%5Ctimes%209%5Ctimes%208%5Ctimes%207%5Ctimes%206%5Ctimes%205%5Ctimes%204%5Ctimes%203%5Ctimes%202%5Ctimes%201%20%3D%203628800. This is more compactly written using the factorial symbol

10!%20%3D%203628800


Problem 2: Six Flavour (Mahavira's ''Ganita-Sara-Sangraha'', c. 850 AD)

This problem is the sum of combinations

%7BC%7D%5E%7B6%7D_%7B0%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B1%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B2%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B3%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B4%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B5%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B6%7D

where

%7BC%7D%5E%7Bn%7D_%7Br%7D%20%3D%20%5Cfrac%7Bn!%7D%7Br!(n-r)!%7D

%7BC%7D%5E%7B6%7D_%7B0%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B1%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B2%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B3%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B4%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B5%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B6%7D%20%3D%201%20%2B%206%20%2B%2015%20%2B%2020%20%2B%2015%20%2B%206%20%2B%201%20

%7BC%7D%5E%7B0%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B1%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B2%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B3%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B4%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B5%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B6%7D%20%20%3D%2064

Shortcut
There is a known property of combinations

%5Csum_%7Br%3D0%7D%5E%7Bn%7D%20%7BC%7D_%7Br%7D%5E%7Bn%7D%20%3D%202%5En

Using this property gives

%20%5Csum_%7Br%3D0%7D%5E%7B6%7D%20%7BC%7D_%7Br%7D%5E%7B6%7D%20%3D%202%5E6%20

%20%5Csum_%7Br%3D0%7D%5E%7B6%7D%20%7BC%7D_%7Br%7D%5E%7B6%7D%20%3D%2064%20


[Combinatorics] Indian Combinatorics的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
高州市| 福建省| 武宣县| 松滋市| 桐城市| 唐海县| 榆林市| 那坡县| 乌兰察布市| 内丘县| 古蔺县| 荥阳市| 阿克| 历史| 江北区| 阿巴嘎旗| 金秀| 安乡县| 乌鲁木齐县| 安远县| 会东县| 曲沃县| 长岛县| 察哈| 常宁市| 贺兰县| 大宁县| 新丰县| 巍山| 定兴县| 昌邑市| 阳春市| 杂多县| 明水县| 分宜县| 光山县| 桐梓县| 隆安县| 高安市| 堆龙德庆县| 威远县|