最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

R語言代做編程輔導(dǎo)和解答M3S9/M4S9 Stochastic Simulation: Project 2

2022-12-13 16:49 作者:拓端tecdat  | 我要投稿

全文鏈接:http://tecdat.cn/?p=30829

  1. Consider the following density:

f(x) / ( 0 otherwise. x(11-x) exp h- 12 -2 + ln 1-xx2

(a) Devise and implement two efficient algorithms for simulating from f(x).
(b) Estimate the normalizing constant using Monte Carlo integration.
(c) Devise and implement a Metropolis-Hastings sampler for generating variates
from f(x). In particular:
i) You should tune the Metropolis-Hastings algorithm to have acceptance rate
about 20%.
ii) Examine how the rate at which the algorithm reaches equilibrium depends
on the starting value.
iii) Consider carefully the correlation structure of the sequence generated.
iv) Compare the results of the Metropolis-Hastings sampler with the method
implemented in (a).

  1. Consider the following bimodal \two-humps" density:

f(x; λ0) / exp -x2 1 + x2 2 + (x1 +2x2)2 - 2λ0x1x2 ; x 2 R2

for some parameter λ0, say λ0 = -4.

(a) Devise and implement a Metropolis-with-Gibbs sampler for generating variates from f(x; λ0).
(b) Devise and implement a Metropolis-Hastings sampler for generating variates from f(x; λ0).
(c) Compare the behavior of the Metropolis-with-Gibbs sampler and MetropolisHastings algorithm when λ0 = -4 and when λ0 = -8.

(a) ? h=function(x) { ? options(warn=-1) ? if(x>0 && x<1)v=exp(-((3+log(x/(1-x)))^2)/2)/(x-x^2) ? else v=0

normalfactor =function(n) ? {

ff=function(x){sqrt(f(x))} fff<-function(x){x*sqrt(f(x))} ? opt=function (n){#alpha,beta,theta are calculated using optimize function in R ??? ??? alpha = optimize(ff,c(0,1),maximum=T)$objective??? beta = 0? ??? theta = optimize(fff,c(0,1),maximum=T)$objective??? tp <- (nf)/(2 *alpha * (theta - beta)) ??? factor = 1/((nf)/(2 * alpha * (theta - beta)))

輸出前100000個(gè)分布的值 ?#envelop function envenv =function(x) ? { ??? if(x<=0)v=0??? else if(x<=0.01)v=330*x ??? else if(x<=0.03)v=33

黑色代表函數(shù)值,綠色代表envelop function的擬合值。

?

計(jì)算envelop function的累計(jì)密度函數(shù)

mv=optimize(f(x)/env(x),c(0,1),maximum=T)$objective? f2 = function(n) ? { ??? rand = vector("numeric",0)

B)

nfactor =function(n) ? { ??? u = runif(n,0,1) ??? theta=mean(f(u)) ? ? ? ? ? ? ? ?

x=f1(u) ??? theta=mean((f(x)/env(x)*a)) ??? cat("normalising factor?? ",theta,"\n") ??? f(x)*a/env(x)


R語言代做編程輔導(dǎo)和解答M3S9/M4S9 Stochastic Simulation: Project 2的評論 (共 條)

分享到微博請遵守國家法律
广宗县| 五华县| 雅安市| 都江堰市| 德庆县| 黔江区| 东宁县| 道孚县| 凯里市| 苏州市| 丰原市| 育儿| 内江市| 大悟县| 健康| 商城县| 岗巴县| 鹿邑县| 搜索| 资溪县| 阿勒泰市| 扎兰屯市| 怀化市| 互助| 长丰县| 疏勒县| 新闻| 瑞安市| 屯昌县| 常州市| 荥阳市| 同江市| 永宁县| 电白县| 广水市| 伊吾县| 武强县| 西贡区| 扶风县| 临湘市| 安丘市|