最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Calculus] Napkin Ring Problem

2021-08-14 21:25 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The napkin ring problem dates back to Edo Japan. Seki Kowa (1642 - 1708), the leading Japanese mathematician at the time was the first person to have solved this problem using a form of integral calculus called ''Enri''. Seki Kowa called the shape an “arc ring”.

The animation below shows a central cross-section of a sphere of radius?r%20 through which a centrally placed cylinder of radius a has been drilled out and the material removed. The remaining shape is called a napkin ring. Determine the volume of the napkin ring.


【Solution】

Consider the diagram of the cross-section of the napkin ring below. Let the radius of the sphere be %20r. Let radius of the cylindrical hole be a, and half the height of the cylindrical hole be h.

To compute the volume of the napkin ring, observe that its volume is equal to:

V%20%3D%20%7BV%7D_%7Bsphere%7D%20-%20%7BV%7D_%7Bcylinder%7D%20-%202%20%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20


The volume of the sphere and the cylinder are well known:


%7BV%7D_%7Bsphere%7D%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D

%7BV%7D_%7Bcylinder%7D%20%20%3D%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D

Note that

a%5E2%20%3D%20r%5E2-h%5E2%20

Use integration to compute the volume of a spherical cap.


%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20%3D%20%5Cint_%7Bh%7D%5E%7Br%7D%20%5Cpi%20%5Cleft(%7Br%7D%5E%7B2%7D%20-%20%7By%7D%5E%7B2%7D%20%5Cright)%20dy

%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20%3D%20%5Cpi%20%5Cleft(%5Cfrac%7B2%7Br%7D%5E%7B3%7D%7D%7B3%7D%20-%20%7Br%7D%5E%7B2%7D%20h%20%2B%20%5Cfrac%7B%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20%5Cright)%20


Hence, the volume of the napkin ring is:

%20V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20-%202%20%5Cpi%20%5Cleft(%5Cfrac%7B2%7Br%7D%5E%7B3%7D%7D%7B3%7D%20-%20%7Br%7D%5E%7B2%7D%20h%20%2B%20%5Cfrac%7B%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20%5Cright)

%20V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20-%20%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%7Br%7D%5E%7B3%7D%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

%20V%20%3D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20


Since a%5E2%20%3D%20r%5E2-h%5E2%20, we get


%20V%20%3D%20-%202%5Cpi%20h%20%5Cleft(%7Br%7D%5E%7B2%7D%20-%20%7Bh%7D%5E%7B2%7D%5Cright)%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

%20V%20%3D%202%5Cpi%20%7Bh%7D%5E%7B3%7D%20%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Bh%7D%5E%7B3%7D


The volume of the napkin ring expressed in terms of the height of the cylindrical hole, where H%3D2h, is:

V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B6%7D%20%7BH%7D%5E%7B3%7D

Note that this volume is independent of the radius of the sphere, who would have guessed! This looks unbelievable at first because it means that if you core out any sphere of any size so that the remaining rings have the same height, those rings will also have the same volume!



[Calculus] Napkin Ring Problem的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
梁河县| 西和县| 德令哈市| 凌云县| 枣阳市| SHOW| 九江市| 年辖:市辖区| 新民市| 连南| 高安市| 徐水县| 庆阳市| 监利县| 临江市| 昌宁县| 淮安市| 岐山县| 武平县| 皋兰县| 宁德市| 许昌县| 石林| 南京市| 资中县| 卢湾区| 务川| 闽清县| 美姑县| 西丰县| 东兴市| 博湖县| 鞍山市| 宜城市| 旌德县| 平乐县| 澄江县| 唐海县| 绥中县| 子洲县| 苗栗县|