最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Series] Sum of Squares

2021-07-10 18:34 作者:AoiSTZ23  | 我要投稿

?By: Tao Steven Zheng (鄭濤)

【Problem】

In his work "On Spirals", Archimedes (287 – 212 BC) derived the formula for calculating the sum of consecutive perfect squares. Figure 1 shows the geometric representation of the sum

1%5E2%2B2%5E2%2B3%5E2%2B4%5E2%2B5%5E2

used by Archimedes. He was able to derive the formula

%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%20k%5E2%20%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D

Explain Archimedes’ proof of the sum of consecutive perfect squares using modern algebraic notation.

Figure 1

【Solution】

?Figure 1 represents the equation

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn%5E2%20(n%2B1)%2B(1%2B2%2B3%2B%E2%8B%AF%2Bn)

Since

1%2B2%2B3%2B%E2%8B%AF%2Bn%3D%5Cfrac%7Bn(n%2B1)%7D%7B2%7D

it follows that

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn%5E2%20(n%2B1)%2B%5Cfrac%7Bn(n%2B1)%7D%7B2%7D

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn(n%2B1)(n%2B%5Cfrac%7B1%7D%7B2%7D)

1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D

Consequently,

%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%20k%5E2%20%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D


[Series] Sum of Squares的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
新巴尔虎右旗| 苗栗县| 拜城县| 会泽县| 虎林市| 武乡县| 勐海县| 南江县| 岑溪市| 东乌| 水富县| 北流市| 刚察县| 集安市| 古交市| 溧阳市| 房山区| 九台市| 鄂温| 苏尼特右旗| 柘荣县| 宣化县| 禄丰县| 渑池县| 原平市| 金川县| 仁布县| 甘肃省| 庐江县| 绥江县| 鞍山市| 邳州市| 嵩明县| 阳城县| 湖南省| 广元市| 温宿县| 开远市| 铁岭县| 凤阳县| 株洲县|