最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

牛頓插值表達式如何記住

2022-04-03 22:30 作者:我愛計算機科學  | 我要投稿



從上圖可以看出,隨著點數的增加,拉格朗日插值中的Li(x)在計算機程序中需要重新計算。


為了解決這個矛盾,提出了牛頓插值法,還是先考慮兩個點:


上述過程顯而易見,再考慮三個點




上述過程也不存在困難,而那些待定系數就是所謂的n階差商:

這個一階差商很好理解,其實就相當于兩個點之間求導數。

對于上面的二階差商,考慮下面圖形:

圖1

在圖1中取三個點,先求出第1,3兩個點之間的差商(一個數),然后求出求出第1,2兩個點之間的差商(另一個數),再把求出的這兩個數連起來,求出它們的導數(分母是第3個點減去第2個點,也就是最后兩個點的距離)。

同樣,如果是三階差商,那就先把(1,2,4)和(1,2,3)這兩組數的二階差商求出來,然后把求出來的這兩個數連起來,再求它們的導數,分母同樣是最后兩個點之差。以此類推。由此得出n階差商表達式:

下面推導所求目標函數的表達式:

通項為:

圖2

通項中有幾個注意的地方:

1:方程右邊每一項的差商部分,除最后一項的差商之外,都不包含未知數x,也就是說,除最后一項的差商之外的其它差商,都是可以求出來的。

2:方程右邊的每一個乘積項都包含x。

3:方程右邊的n階差商對應n個乘積項。

再把圖2的通項和泰勒級數比較:

會發(fā)現兩者形式上很像,事實上:

如果 f(x) 在 [a,b] 上存在 n 階導數,且 xi∈[a,b],i = 0, 1, ..., n ,則


牛頓插值表達式如何記住的評論 (共 條)

分享到微博請遵守國家法律
北辰区| 高唐县| 东乌珠穆沁旗| 伊川县| 宁强县| 郸城县| 通榆县| 库车县| 泸州市| 台北市| 昭苏县| 石门县| 东台市| 武强县| 清徐县| 镇雄县| 台北县| 邵武市| 璧山县| 陕西省| 阜平县| 漳州市| 布拖县| 策勒县| 济南市| 宝清县| 金门县| 乾安县| 新巴尔虎右旗| 仙桃市| 弥渡县| 旬阳县| 保山市| 青浦区| 沾化县| 信丰县| 东乌珠穆沁旗| 巍山| 宣威市| 永修县| 嘉义市|